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1 Introduction

In the past week, we have discussed how to extend the simple linear least squares models
(SLS)

Yi = β1 + β2 ·Xi + εi (1)

to a multiple linear least squares model, where we are using multiple explanatory variables
to explain our outcome variable Y .

Yi = β1 + β2 ·X1,i + · · ·+ βnXn−1,i + εi (2)

We’ve also gone over ways in which the multiple regression model allows for more flexibility
in modeling data than in the simpe linear least square model. We can add inidicator
variables or functions of existing variables1. We can also add interaction terms, like X1 ·X2

as variables in our multiple regression so that the marginal effect of X1 varies depending
on X2 (and vice versa). Put together, all this allows the modeled relationship between
the explanatory variables and the outcome in our sample to be more complex and better
match what we think is really happening in the population.

However, as we went over, knowing what to add in a multiple regression model can be
a problem. As we went over last week, this can lead to overfitting (i.e, supposing a more
complex model) which can lead to a bad out of sample prediction. An example is given
below in figure 1

In order to correct for this, some tests have been developed to see if the new coeffecients
are really significant. We go over these tests in the next section.

2 Testing for Significance in Multiple Regression Models

2.1 F-tests

The motivating idea behind an F-test is that, while adding any new variable to our model
will mechanically increse the fit of our model (and reduce it’s SSE), we want to test for

1for example, in addition to having X1 and X2 as explanatory variables, we can add X2
1 and logX2 as

variables to our regression and estimate the β coeffecients in front of them
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Figure 1: Higher Order Polynomial has poor out of sample properties

whether the reduction in SSE is ”statistically significant”.
Suppose we have a baseline model which includes variables X1, . . . , XM . We want to see

whether including J variables XM+1, . . . XM+1+J increases the fit of our model significantly.
To do this, we first estimate thus our baseline model and call this the ”restricted model”.
We denote the SSE of this model SSER. Then, we would estimate the regression model
including all the variables X1 through XM+1+J . We call this the unrestricted model and
denote the SSE of this model SSEU . Under the null hypothesis that these new variables
add no explanatory power to our model, we have that

F ∗ =
(SSER − SSEU )/J

SSEU/(N − k)
∼ FJ,(N−(M+J+1)) (3)

We can then compare our F statistic to the F distribution to decide whether to reject
the null hypothesis or not. The intuition for this test follows through from t-tests. If we get
a very large F ∗ value, then SSEU is much smaller than SSER. Under the null hypothesis
of no relationship, this may not be very likely, so we would reject our null hypothesis. To
determine what a ”large” F ∗ is, we have to look at the critical value for the F distribution.

Note that the null hypothesis for this model is essentially that:

H0 : βM+1 = βM+2 = · · · = βM+J+1 = 0

and the alternative is that at least one of these β values are not zero.

2.2 Testing the Significance of the Model

This section will be short and mainly a practical matter. When we say ”testing the sig-
nificance” of the model we are basically running a test against the null hypothesis that all
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the non-constant beta terms are equal to 0. This is done by an F test where the restricted
model only has a constant term and the unrestricted model is the full model. This is the
F test that Stata runs by default and whose F-statistic is reported in the top right corner
of the regression output. The F statistic is then:

F =
(SST − SSE)/(K − 1)

SSE/(N −K)
(4)

3 Other Modeling Issues

3.1 Adjusted R2

Last section, we talked about adjusted R2. I don’t think it’ll come up on tests, but I’ll
leave the formula here in case you’re interested:

R2
adj = 1− SSE/(N −K)

SST/(N − 1)
(5)

in the numerator we can see the punishment for adding more variables. As K increases,
N-K decreases so SSE/(N −K) increases so adjusted R2

adj decreases.

3.2 RESET Tests

In Stata output, sometimes you’ll see a reset test done for misspecification. This test is
basically comparing your model to a model with added square/cubic polynomial terms
and interactions and seeing if adding those interaction terms significantly increses the fit
of your model.

3.3 Collinearity

Finally, as a note, you may want to watch out for collinearity. Suppose I have two variables,
X2 and X3 which are highly collinear, and I want to estimate the model

yi = β1 + β2x2 + β3x3 + εi

The variance of my estimator for β2 is given:

var(β̂2) =
σ2

(1− r223)
∑

i(x2 − x̄2)2
(6)

where r23 is the correlation coeffecient between 2 and 3. As this becomes very high, our
standard error on β̂2 will become larger, which will make it harder to do inference on
the model. Intuitively this happens because it becomes unclear whether the association is
between y and x2 or y and x3, since whenver x2 increases, x3 increases linearly also. This
is something to watch out for when doing multiple regression.
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4 Practice Problem

1. Consider the model
y = β1 + β2x2 + β3x3 + εb1b2

b3

 =

 0.9657
0.69914
1.7769

 , ˆcov(b) =

 0.21812 0.019195 −0.050301
0.019195 0.048526 −0.031233
−0.050301 −0.031223 0.037120


where σ̂2 = 2.5193, n = 20, and R2 = 0.9466

(a) Find the total variation, unexplained variation and explained variation for this
model

(b) Find confidence intervals for β2 and β3

(c) Use a t-test to test the hypothesis β2 = 1 against β2 6= 1.

(d) Test the joint hypothesis that β2 = 0 agains β3 = 0.

(e) Test the hypothesis 2β2 = β3.
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